microbiome

What is the microbiome?There has been an explosion in our understanding of the human microbiome (the genome of all our microbes) in the recent years. Advances in genome sequencing technologies and metagenomic analysis (genetic study of genomes taken directly from environmental samples) have enabled scientists to study these microbes and their function and to research microbiome–host interactions both in health and disease. The human microbiome has an estimated 100 trillion microbes, the bulk of which live in our gut. This summary gives an overview about what is known about the microbiota (microbial community) in paediatric practice. This short article is written for the practising paediatrician. For a scientific overview, the reader is referred to reviews.1 ,2 An understanding of this complex ecological community is important as it affects our patients, and manipulation of the gut microbiome has the potential to be used in the treatment of childhood diseases in the future. The human microbiome is composed of communities of bacteria (and viruses and fungi) that have a greater complexity than the human genome itself. Large-scale metagenomic projects (community and environmental genomics), such as the European Metagenomics of the Human Intestinal Tract and the Human Microbiome Project, have reported 3.3 million unique protein-encoding genes as compared with the entire human genome, which has around 23 000 genes. These studies have described the beneficial functions of the normal gut microbiota on health down to the genetic level.3 The human microbiome has extensive functions such as development of immunity, defence against pathogens, host nutrition including production of short-chain fatty acids important in host energy metabolism, synthesis of vitamins and fat storage …

Kimberley Wilson - Whole Body Mental Health

Walking Ecosystems in Microbiome-Inspired Green Infrastructure: An Ecological Perspective on Enhancing Personal and Planetary HealthPrinciples of ecology apply at myriad scales, including within the human body and the intertwined macro and microscopic ecosystems that we depend upon for survival. The conceptual principles of dysbiosis (‘life in distress’) also apply to different realms of life—our microbiome, the macro environment and the socioeconomic domain. Viewing the human body as a holobiont—a host plus billions of microbial organisms working symbiotically to form a functioning ecological unit—has the potential to enhance personal and planetary health. We discuss this ecological perspective in our paper. We also discuss the proposals to rewild the microbiome, innovative microbiome-inspired green infrastructure (MIGI) and the basis of prescribing ‘doses of nature’. Particular emphasis is given to MIGI—a collective term for the design and management of innovative living urban features that could potentially enhance public health via health-inducing microbial interactions. This concept builds upon the microbiome rewilding hypothesis. Mounting evidence points to the importance of microbial diversity in maintaining favorable health. Moreover, connecting with nature—both physically and psychologically–has been shown to enhance our health and wellbeing. However, we still need to understand the underlying mechanisms, and optimal types and levels of exposure. This paper adds to other recent calls for the inclusion of the environment-microbiome-health axis in nature–human health research. Recognizing that all forms of life—both the seen and the unseen—are in some way connected (ecologically, socially, evolutionarily), paves the way to valuing reciprocity in the nature–human relationship. It is with a holistic and symbiotic perspective that we can begin to integrate strategies and address connected issues of human and environmental health. The prospective strategies discussed in our paper focus on enhancing our connections with the natural world, and ultimately aim to help address the global challenge of halting and reversing dysbiosis in all its manifestations.